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SUMMARY 

A set of 120 polymers was analyzed by using pattern reco@tion methods such 
as the cfuster analysis, K-nearest neighbour and linear learning machine methods. A 
two-dimensional display of multivariate data is used to illustrate the results. 

The use of pyrolysis gas chromatography as a powerful analytical technique 
has been demoastrated many times - L 3. However, its possibilities have not been ex- 
hausted and its wider application as an amlytical method is complicated for several 
reasons. As an empirical method, the disadvantage of pyrolysis gas chromatography 
is that for the identification of unknown substances a compilation of pyrograms must 
be available. Depending on the conditions of pyrolysis and gas chromatographic 
analysis, different results may be obtained by difkrent laboratories. 

A possible means of anaiyzing empirical resuks is to apply the pattern recogni- 
tion technique, which seems to be very useful for handling pyrolysis gas chromato- 
graphic data. Firstly, the pattern recognition method enables one to obtain Laforma- 
tion about a substance of interest when no reference chromatograms are available, 
and secondly, it can tolerate the existence of deviations in the initial data. 1t aLso 
enables one to overcome the problem of deviations in the retention times of corre- 
spending pyrolysis products from different polymers_ The second characteristic 
provides the possibility of reconciling differences in results obtained -by diKerent 
laboratories. 

In a previous study=, we described oae of the pattern recognit:on methods (the 
linear learning machine method) used to identify different molecular groups in fibres. 
The task in the present work was to continue studies on the appkation of this 
method. The theory of pattern recog&ion is not given here because sticient informa- 
tion is available elsewheress6 . 

EXPERIMENTAL 

Unfortunately, the pyrolysis gas chromatograms presented in many scientific 
papers were obtained under different conditions, and it was difficult to find suitable 
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chromatograms. We therefore used chromatograms produced in our labor&o_ry. The 
set of 220 polymers selected consists mainly of several natural and synthetic Gbres. 
AI’1 fibres were pvolyzed by using a Curie-point Pye Unicam pyrofyzer at 980”. A 
P&in-Elmer Model 900 gas chromatograph was used for the analysis of the thermal 
degradation products. 

The other operating conditions were: dual flame-ionization detector; Inerton 
AW-DMCS/Carbowax 20M column, length 2 m, I.D. 2 mm; initial column temperature 
70”, programmed at 6S”/min to a final temperature of 190”, which was maintained 
for 10 min. 

For data processing, an off-line computer system was used. The gas chroma- 
tographic output signal was handled by using a Hewlett-Packard 3370A integrator 
and a Videoton lOlOB computer_ The retention time and peak area of every peak 
were punched on to paper tape. 

PRESENTATION OF PYROGRATMS TO THE COMPUTER 

The most precise method for the presentation of pyrolysis gas chromatograms 
to the computer is to give the name (retention time) and intensity (peak area) of each 
individual thermal degradation product for all pyrograms available. The best means 
of solving this problem is to identify all individual components in the pyrogram. For 
the calculation, each pyrogram is presented as a sequence of numbers, every peak 
being characterized by numbers that are in accordance with the peak intensity. If 
there is no peak, the intensity is zero. Such a presentation is commonly used for plot- 
ting gas chromatograms in tabular form. Unfortunately such a method of coding is 
limited by the set of substances used and needs a large computer memory. 

In our study, peaks were coded as in infrared or mass spectroscopy. Each 
pyrogram was divided into zones of equal width and the most intense peak was raken 
into account. All chromatograms were presented to the computer as a nolmafized 
and logarithmic sequence of intensities of selected peaks. For the calctiation, the 
integer part of the logarithmic value was takes. 

Pyrolysis gas chromatograms were divided correspondingly into 20 and 40 zones, 
giving two sets of data (Fig. I). Such “low” and “high” data sets permit one to estimate 
the loss of information by coding. 

An essential parameter is the+ratio between the number of objects fpresented 
and the number of measurements that characterize a particular object- Let us denote 
this ratio by s. From the literature6 it is known that s > 3 is needed. In our work, 
the conditions sZO = 6, s&,, = 3 were folIowed. According to the general geometric 
concept, coded programs in pattern recognition are treated as a set of points in either 
20- or 40-dimensional hyperspace. 

CLUSTER ANALYSES OF PYROGRAMS 

It is interesting to elucidate groups of similar pyrolysis gas chromatograms in 
the given set of data, Le., to make a classification of polymers on the basis of their 
pyrolysis chromatograms. ti a geometric sense, one looks for a set of pofats (clusters) 
in. the hyperspace. We used the Euclidean distance between two points for as a measure 
of similarity; for finding clusters, two algorithms were used; 
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Fig. 1. Codirrg a p~ograxn in the 40- and ZO-dimension2l cues. 

In the first algorithm’, the number of clusters is not fixed and a parameter R 
is assigned to determine the number of clusters; the points that are in one hypersphqe, 
of radius R, form a cluster. The centre of the hypersphere is located at the maximJm 
density of the points. If the number of clusters is constant for dilherent R values, then 
there are well separated and compact clusters in the hyperspace. 

Another algorithm may -start from an arbitrary point. All points that are 
nearer to that point than the value of the threshold, r, are included in a cluster. 
Aeeording to the measure of similarity, r new points are included with these points 
in a cluster. The procedure is repeated until there are no points to add to this cluster, 
then a new point that does not belong to the cluster so formed is taken and the above 
procedure repeated. In this way, one can connect all of the existing objects to the 
clusters. 

These two techniques pve virtual& identical results for both the 4U- and Xl- 
dimensional cases. Three large clusters are formed; one consists of rubbers and the 
second ofpolyacrylonitrile Sbres. ‘Ihe third cluster consists of -CR2-CK12-type fibres, 
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where R is an alcoholic hydroxyl acetate radical or chlorine group. The other fibres 
@olyamides, polyurethanes, polyesters) have no tendency to form clusters, i.e., they 
are homogeneously distributed in the hyperspace. 

Ifthe radius R or the similarity measure r was increased, then all three clusters 
converged into one large cluster, but the separately located points remained beyond 
the cluster as before. The parameters R and r must, of course, be changed within the 
appropriate limits, otherwise one obtains only one cluster or as many clusters as there 
are objects. 

The results of the cluster analysis demonstrate that there is a cluster with a 
large number of members (about half of the inspected polymers), which can be divided 
into three smaller clusters, and a number of separately iocated substances. 

CORRELATION STUDIES BETWEEN PYROLYSIS GAS CHROMATOGRAMS AND THE 
STRUCTURES OF SLSSTANCES 

It is convenient to use pattern recognition tec’hniques to establish whether or 
not a certain property of the object appears in the pyrolysis gas chromatogram. For 
classification purposes we used two methods, the K-nearest neighbor? and the linear 
learning machine methodsg. If the K-nearest neighbour method is used, the substance 
is classified according to its K-nearest neighbours; in this work K = 1 and 3. Using 
the linear learning machine method, one calculates the dot product between the 
object vector and an appropriately derived weight vector, the object being dassified 
according to the sign of the dot product. Geometrically, this means that the object 
is classified according to the side of the classifying hyperplane on which it lies. 

The results are presented in Table I. ?Ve have a binary classification for each 
property, i.e., the object may or may not have a particular property. Table I gives 
the percentage of the prediction that characterizes the probability of classification 

-lYJ3LE I 

PERCENTAGES OF PREDICTION 

Property Positive K-nearest neighbow method Linear learning machine 

class metJzod 
number -___- 

K=1 K=3 

zo- 40- 20- co- zo- 40- 
dimensional dimensiona dimemionaf dimensional &mensionaI dimexiona! 

Nitrogen 
-CN 
NH-CO 
Benzene ring 
Oxygen 
0,Nand 
benzene ring 
in m&n chain 
-C=o 
-o-C=0 
-Cl 
Polvolelin 

57 73 77 72 72 55 59 
25 92 91 93 90 74 74 
31 76 81 74 79 67 51 
20 86 83 90 83 61 75 
61 73 83 72 75 58 55 

50 72 82 67 77 59 48 
49 68 75 66 70 43 51 
26 77 74 77 77 81 74 
19 85 89 84 85 59 69 
14 92 87 85 84 84 84 



c0rrectnes~~*. The column “positive class number” shows the number of polymers 
that have a particular property. The greater the prediction, the clearer the structural 
element of a polymer is expressed in the pyrogram. 

Fukunaga and Olsen rr described an interesting technique for the two- 
dimensional display of multivariate data, namely the so-called &displays, and we 
used it to illustrate our results. The method displays the points on a two-dimensional 
display, the coordinates of which are the squared Euclidean distances from two 
particular points in the n-dimensional space. These two points are the geometric 
centres of two classes. The method preserves some geometric structure white placing 
a heavy weight on class separability. 4 straight line on the d-display corresponds to 
some decision boundary in the n-dimensional object space that is reduced to a 
hypes-plane for the line with an angle of 45” with respect to the dI axis. Fig. 2 shows the 
d-display for five classes. The overlapping of the -C= N, =N- and -Cl classes is 
considerably less than for the “hetero-atom in the main chain” class. Partial over- 
lapping of two classes in the display does not mean that the two classes are not sepa- 
rated at ail but that other method must be used to find the decision boundary, such 
as e.g., the linear learning machine method or the data -must be normalized ap- 
propriately”. 

DISCUSSION 

Bearing in mind the specific features of pyrolysis gas chromatography, the 
results of the ciuster analyses of the pyrolysis products of the polymers can be sum- 
marized as follows. PolyacrylonSrile, polyvinyl and rubber polymers give charac- 
teristic pyrograms that enable one to differentiate them from the others. However, it 
is difficult to differentiate the above polymers inside a given class. On the other 
hand, individual polyamide, polyether and polyurethane pyrograms are very charac- 
teristic and are easily differentiated from each other. 

It is evident that our results depend on the experimental conditions used. Using 
another liquid phase with a polarity diKerent from that of Carbowax 20M, one can 
obtain different results. As a practical consequence, we have a method for estimating 
the suitability of a particular liquid phase for the analysis of a particular class of 
polymers. In this work it seems to be valid for polyamide, polyester and polyurethane 
polymers. However, if the constituents of the polymers are very similar, the polarity 
change might have no effect. All this is aIso valid for the pyrolysis conditions. 

The results in Table I show that there are several functional groups the 
existence of which can be established with reasonable probability (-CN, -Cl and 
benzene ring). There are some functional groups, however, for which the prediction is 
on the random guessing level (-CO, U). In the linear learning machine method, the 
random guessing level is 50 %_ If the use of the pattern recognition technique fails for 
some property, the two main reasons are that either the presentation (or method used) 
does not express the expected property, or the presentation is coarse. 

As can be seen from Table I, the prediction for K = 1 (40-dimensional) is 
better than for K = t (20-dimensional) and K = 3 (40- and 20-dimensional). K = 1 
(2Odimensional) and K = 3 (40- and 2O-dimensional) give virtually identical results. 
Therefore, we can conclude that improving the resolution (as wea as K) does not have 
a signiscant effect on the improvement of prediction. The percentage of predictjon 



obtained characterizes the ability of the pyrograms to e$press the tested property. It 
can be seen from Fig. 2 that most ofthe ~Iassesoveriap cqnsiderabfy tid OII intxeastng 

the dimension of the hypaspece the overlapping of thz &sss decre&es.-It seems that 
they did not form the linearly separated set of points (as in our previous work4), 
which is why the results ofthe K-nearest neighbour method are betterthan those of the 
linear learning machine method. On the other hand, it is evident that the rest& ob- 
tained with pattern recognition techniques depend oh the pr&processing method, Le., 
the tiny in which the pyro_mms are presented to the computer. In this work, we did 
not attempt to obtain a good separation for a particular class. There are effective pre- 
processing and feature selection methods in pattern recognition for improving inter- 
class resolutions and one can obtain considerably better results than those in Table I 
for a particular problem of interest. Our presentation (logarithmic intensities), which 
places a heavy weight on the smaller peaks, may emphasize unimportant features for 
a particular class. It is clear from the above discussion that pre-processing methods 
for pyrograms need further investigation. 
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The interpretation of spectral data with pattern recognition is a completely 
empirical method, and therefore only practicai results will show which chemical 
structures are classified well. 
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