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SUMMARY

A set of 120 polymers was analyzed by using pattern recognition methods such
as the cluster analysis, K-nearest neighbour and linear iearning machine methods. A
two-dimensional display of multivariate data is used to illustrate the results.

INTRODUCTION

The use of pyrolysis gas chromatography as a powerful analytical technique
has been demonstrated many times'—3. However, its possibilities have not been ex-
hausted and its wider application as an analytical method is complicated for several
reasons. As an empirical method, the disadvantage of pyrolysis gas chromatography
is that for the identification of unknown substances a compilation of pyrograms must
be available. Depending on the conditions of pyrolysis and gas chromatographic
analysis, different results may be obtained by different laboratories.

A possible means of analyzing empirical results is to apply the pattern recogni-
tion technique, which seems to be very useful for handling pyrolysis gas chromato-
graphic data. Firstly, the pattern recognition method enables one to obtain informa-
tion about a substance of interest when no reference chromatograms are available,
and secondly, it can tolerate the existemce of deviations in the initial data. It also
enables one to overcome the problem of deviations in the retention times of corre-
sponding pyrolysis products from different polymers. The second characteristic
provides the possibility of reconciling differences in results obtained -by different
laboratories.

In a previous study®, we described one of the pattern recognition methods (the
linear learning machine method) used to identify different molecular groups in fibres.
The task in the present work was to continue studies on the application of this
method. The theory of pattern recognition is not given here because sufiicient informa-
tion is available elsewheres.®.

EXPERIMENTAL

* Unfortunately, the pyrolysis gas chroma:tog:ams presented in many scientific
papers were abtained under different conditions, and it was difficult to find suitable
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chromatograms. We therefore used chromatograms produced in our Iaboratory. The
set of 120 polymers selected consists mainly of several natural and synthetic fibres.
All fibres were pyrolyzed by using a Curie-point Pye Unicam pyrolyzer at 980°. A
Parkin-Elmer Model 900 gas chromatograph was used for the analysis of the thermal
degradation products.

The other operating conditions were: dual flame-ionization detector; Inerton
AW-DMCS/Carbowax 20M column, length 2 m, I.D. 2 mm; initial column temperature
70°, programmed at 6.5°/min to a final temperature of 190°, which was maintained
for 10 min.

For data processing, an off-line computer system was used. The gas chroma-
tographic output signal was handled by using a Hewlett-Packard 3370A integrator
and a Videoton 1010B computer. The retention time and peak area of every peak
were punched on to paper tape.

PRESENTATION OF PYROGRAMS TO THE COMPUTER

The most precise method for the presentation of pyrolysis gas chromatograms
to the computer is to give the name (retention time) and intensity (peak area) of each
individual thermal degradation product for all pyrograms available. The best means
of solving this problem is to identify all individual components in the pyrogram. For
the calculation, each pyrogram is presented as a sequence of numbers, every peak
being characterized by numbers that are in accordance with the peak intensity. If
there is no peak, the intensity is zero. Such a presentation is commonly used for plot-
ting gas chromatograms in tabular form. Unfortunately such a method of coding is
limited by the set of substances used and needs a large computer memory.

In our study, peaks were coded as in infrared or mass spectroscopy. Each
pyrogram was divided into zones of equal width and the most intense peak was taken
into account. All chromatograms were presented to the computer as a normalized
and logarithmic sequence of intensities of selected peaks. For the calculation, the
integer part of the logarithmic value was taken.

Pyrolysis gas chromatograms were divided correspondingly into 20 and 40 zones,
giving two sets of data (Fig. 1). Such “low’ and “high” data sets permit one to estimate
the loss of information by coding.

An cssential parameter is theiratio between the number of objects fpresented
and the number of measurements that characterize a particular object. Let us denote
this ratio by s. From the literature® it is known that s > 3 is needed. In our work,
the conditions s, = 6, s¢ = 3 were followed. According to the general geometric
concept, coded programs in pattern recognition are treated as a set of points in either
20- or 40-dimensionai hyperspace.

CLUSTER ANALYSES OF PYROGRAMS

It is interesting to elucidate groups of similar pyrolysis gas chromatograms in
the given set of data, i.e., to make a classification of polymers on the basis of their
pyrolysis chromatograms. In a geometric sense, one looks for a set of points (clusters)
in. the hyperspace. We used the Euclidean distance between two points for as 2 measure
of similarity; for finding clusters, two algorithms were used:
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Fig. 1. Coding a pyrogram in the 40- and 20-dimensional cases.

In the first algorithm’, the number of clusters is not fixed and a parameter R
is assigned to determine the number of clusters; the points that are in one hypersphege,
of radius R, form a cluster. The centre of the hypersphere is located at the maximim
density of the points. If the number of clusters is constant for different R values, then
there are well separated and compact clusters in the hyperspace.

Another algorithm may start from an arbitrary point. All points that are
nearer to that point than the value of the threshold, r, are included in a cluster.
According to the measure of similarity, r new points are included with these points
in a cluster. The procedure is repeated until there are no points to add to this cluster,
then a new point that does not belong to the cluster so formed is taken and the above
pracedure repeated. In this way, one can connect all of the existing objects to the
clusters.

These two techniques gave virtually identical results for both the 40- and 20-
dimensional cases. Three large clusters are formed; one consists of rubbers and the
second of polyacrylonitrile fibres. The third cluster consists of ~CH,-CHR-type fibres,
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where R is an alcoholic hydroxy! acetate radical or chlorine group. The other fibres
(polyamides, polyurethanes, polyesters) have no tendency to form clusters, i.e., they
are homogeneously distributed in the hyperspace.

If the radius R or the similarity measure r was increased, then all three clusters
converged into one large cluster, but the separately located points remained beyond
the cluster as before. The parameters R and r must, of course, be changed within the
appropriate limits, otherwise one obtains only one cluster or as many clusters as there
are objects.

The resuits of the cluster analysis demonstrate that there is a cluster with a
large number of members (about half of the inspected polymers), which can be divided
into three smaller clusters, and a number of separately located substances.

CORRELATION STUDIES BETWEEN PYROLYSIS GAS CHROMATOGRAMS AND THE
STRUCTURES OF SUB3STANCES

It is convenient to use pattern recognition techniques to establish whether or
not a certain property of the object appears in the pyrolysis gas chromatogram. For
classification purposes we used two methods, the K-nearest neighbour® and the linear
learning machine methods®. If the K-nearest neighbour method is used, the substance
is classified according to its K-nearest neighbours; in this work K = 1 and 3. Using
the linear learning machine method, one calculates the dot product between the
object vector and an appropriately derived weight vector, the object being classified
according to the sign of the dot product. Geometrically, this means that the object
is classified according to the side of the classifying hyperplane on which it lies.

The results are presented in Table I. We have a binary classification for each
property, i.e., the object may or may not have a particular property. Table I gives
the percentage of the prediction that characterizes the probability of classification

!
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TABLEX
PERCENTAGES OF PREDICTION
Property Positive  K-nearest neighbour method Linear learning machine
class method
number
K=1 K=3
20- 40- 20- 40- 20- 40-
dimeansional dii lonal di, sional dimensional dimensional dimensional
Nitrogen 57 73 77 72 72 55 59
-CN 25 92 91 93 80 74 74
NH-CO 31 76 81 74 79 67 51
Benzene ring 20 86 83 80 83 61 75
Oxygen 61 73 83 72 75 58 55
O, N and
benzene ring
in main chain 50 72 82 67 77 59 48
-C=0C 49 68 75 66 70 43 51
-0-C=0 26 77 74 77 77 81 74
—C1 io 85 89 84 85 59 69

Polvoletin 14 92 87 83 84 84 84
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correctness®. The column “positive class number” shows the number of polymers
that have a particular property. The greater the prediction, the clearer the structural
element of a polymer is expressed in the pyrogram.

Fukunaga and Olsen'! described an interesting technique for the two-
dimensional display of multivariate data, namely the so-called &displays, and we
used it to illustrate our results. The method displays the points on a two-dimensional
display, the coordinates of which are the squared Euclidean distances from two
particular points in the s-dimensional space. These two points are the geometric
centres of two classes. The method preserves some geometric structure while placing
a heavy weight on class separability. A straight line on the d-display corresponds to
some decision boundary in the n-dimensional object space that is reduced to a
hyperplane for the line with an angle of 45° with respect to the 4, axis. Fig. 2 shows the
d-display for five classes. The overlapping of the -C=N, =N- and —CI classes is
considerably less than for the “‘hetero-atom in the main chain” class. Partial over-
lapping of two classes in the display does not mean that the two classes are not sepa-
rated at all but that other method must be used to find the decision boundary, such
as e.g., the linear learning machine method or the data must be normalized ap-
propriately'.

DISCUSSION

Bearing in mind the specific features of pyrolysis gas chromatography, the
results of the ctuster analyses of the pyrolysis products of the polymers can be sum-
marized as follows. Polyacrylonitrile, polyvinyl and rubber polymers give charac-
teristic pyrograms that enable one to differentiate them from the others. However, it
is difficult to differentiate the above polymers inside a given class. On the other
hand, individual polyamide, polyether and polyurethane pyrograms are very charac-
teristic and are easily differentiated from each other.

It is evident that our results depend on the experimental conditions used. Using
another liquid phase with a polarity different from that of Carbowax 20M, one can
obtain different results. As a practical consequence, we have a method for estimating
the suitability of a particular liquid phase for the analysis of a particular class of
polymers. In this work it seems to be valid for polyamide, polyester and polyurethane
polymers. However, if the constituents of the polymers are very similar, the polarity
change might have no effect. All this is also valid for the pyrolysis conditions.

The results in Table I show that there are several functional groups the
existence of which can be established with reasonable probability (-CN, —Cl and
benzene ring). There are some functional groups, however, for which the prediction is
on the random guessing level (<CO, —O-). In the linear learning machine method, the
random guessing level is 50 9. If the use of the pattern recognition technique fails for
some property, the two main reasons are that either the presentation (or method used)
does not express the expected property, or the presentation is coarse.

As can be seen from Table I, the prediction for X = 1 (40-dimensional) is
better than for X = 1 (20-dimensional) and X = 3 (40- and 20-dimensional). K =1
(20-dimensional) and K = 3 (40- and 20-dimensional) give virtually identical results.
Therefore, we can conclude that improving the resolution (as well as K) does not have
a significant effect on the improvement of prediction. The percentage of prediction
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obtained characterizes the ability of the pyrograms to express the tested property. It
can be seen from Fig. 2 that most of the classes overlap considerably and on increasing
the dimension of the hyperspace the overlapping of the classes decreases. It seems that
they did not form the lincarly separated set of points (as in our previous work?¥),
which is why the results of the X-nearest neighbour method are better than those of the
linear learning machine methed. On the other hand, it is evident that the results ob-
tained with pattern recognition techiniques depend on the pre-processing method, fe.,
the way in which the pyrograms are presented to the computer. In this work, we did
not attempt to obtain a gocd separation for a particular class. There are effective pre-
processing and feature selection methods in pattern recognition for improving inter-
class resolution® and one can obtain considerably better results than those in Table ¥
for a particular problem of interest. Our presentation (logarithmic intensities), which
places a heavy weight on the smaller peaks, may emphasize unimportant features for
a particular class. It is clear from the above discussion that pre-processing methods
for pyrograms neced further investigation.
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The interpretation of spectral data with pattern recognition is a completely
empirical method, and thercfore only practical results will show which chemical
structures are classified well. .
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